数学建模
第(7/8)节
警车重复经过同一条街道同一个离散点时,仅记录一次。
〔3〕
式中,表示警车经过的离散点数,代表整个区域总的离散点数。值越大,说明警车所经过的街道数目越多,所取得的效果越显着。
同时考虑到在巡逻过程中可能会出现这样的情况:在相同的时段内,警车会屡次巡逻局部街道,而一些街道却很少巡逻甚至没有警车到达,这样会造成一些巡逻盲区。分布很不均衡。这样就可能出现巡逻密度大的街道上的违法犯罪分子不敢在街道上作案,而流窜到巡逻密度稀疏的街道上作案,因此在相同的警车数目条件下,密度不均衡的巡逻方式的巡逻效果的效果较差,而密度较均衡的巡逻方式所取得的巡逻效果会更好些。我们引入一个巡逻的不均匀度来衡量巡逻效果的显着性,考虑到方差能表示不均衡度,于是我们用方差的大小来表征不均衡,方差越大,巡逻密度越不均衡,所取得的巡逻效果越差。
〔4〕
问题1所给出的满足D1条件下的警车数目为13辆,这时每辆警车在初始停靠点静止不动,只有该管辖区域内发生了案件时,警车才从初始停靠点赶到案发现场处理案件。当警车在巡逻状态时,所需要考虑的问题就更复杂一些,如当节点运动时,警车还能否到达D1的要求,警车的运动方向如何等问题,但根本算法思想与问题1类似,所得的算法2的框图如图7所示,
为了简化问题,我们假设各分区警车的巡逻时候,尽量保证所有的警车的行驶方向相一致,且警车都走双行道,即当警车走到某个节点后,它们又同时返回初始停靠点,警车的行驶方向有四种方式,如6所示。
在图6中,数字1代表走巡逻走的第一步,2表示朝1的巡逻方向相反的方向巡逻。在具体程序实现时,四种巡逻方向任意选择,但是尽量保证所有的警车向同一个方向巡逻。
图6 各警车巡逻方向图
我们用MATLAB编程对这种巡逻方式进行计算,所得的车辆数目为18辆,综合评价指标为,其结果巡逻方案见附件中的“1193402-Result3.txt〞所示。
在满足问题叁的根底上讨论D3条件,警车的巡逻方案和评价指标
巡逻的隐蔽性表达在警车的巡逻路线和时间没有明显的规律,主要目的是让违法犯罪分子无可乘之机,防止他们在非巡逻时间实施违法犯罪活动,危害人民的生命和财产平安。
为了使巡逻的规律具有隐蔽性,这就需要警车在巡逻时至少具有两条不同的路线,时间最好也是不相同的。因此,考虑到隐蔽性时,只需要在问题2的根底上加上一个随机过程即可。对于其评价指标,由于警车有几条可选的巡逻路线,当相同的路线在同一时间内重复出现时,重新将所设定的方案再执行一遍,我们用这个时间间隔来衡量隐蔽性的程度,当循环周期越大,说明可选的巡逻方案越多,其规律就越具有隐蔽性,而循环周期越小时,说明巡逻方案比拟少,其隐蔽性较差。在巡逻状态时,最差的隐蔽性巡逻方案是巡逻方案只有一个,并且时间固定,这样的巡逻方案没有任何隐蔽性可言。
5.5 整个区域为10辆车时的巡逻方案
由第叁问的结果可知,10辆车的数量是不能把整个区域完全覆盖的,其算法与算法2类似,不同的是此时车的数目已经固定了,要求使D1,D2尽量大的满足,我们求得的评价指标值为,所得的巡逻方案见附件中的“1193402-Result5.txt〞所示。
5.6 平均行驶速度提高到时的巡逻方式和评价指标值
问题六的分析方法与具体实现与问题叁一致,但是警车的接警后的平均速度由原来的提高到,于是各分区的覆盖范围也增大了,将数值带入问题3的算法中求解, 计算得的指标值为,其巡逻方案见附件中的“1193402-Result6.txt〞所示。
图7 算法2框图
第(7/8)节
推荐书籍: