造神年代(出书版) 第39节
第(2/8)节
本代表们听译员解释之后都在笑。
“为什么我会坐下来,从头考虑这些常识问题?因为我感觉概率学已经玩不动了。我的偶像杨立昆,在2017年就说他已经准备好放弃概率学。那时我还是个无知少年,觉得他在无病呻吟。到2029年,我比他更绝望。不是说概率学ai不行,它很厉害。谷歌透镜、人脸识别、自动驾驶、智能辅助设计、诊断系统、智能测谎、无人机刺杀、智能战略防御,不久之前你们还用得很开心。这些都是概率学ai的成果。当代流行的ai中,最差劲的是智能教育系统,教书的ai假装教,上课的学生假装学。最可笑的是ai明星,猴子穿个龙袍就敢去演皇帝。这两个失败都情有可原:在我看来,当个好老师是人类最高智力成就,而表演别人是人类最狡诈的智能行为。这些短板还不算严重。真正严重的是:概率学ai看来永远达不到我的目标——通用人工智能。(注:杨立昆,即yannlecun,美国人工智能学家,深度学习的创始人之一,被誉为“卷积网络之父”。)
“于是我反复思考那个唯一的通用智能,越想越气愤。它凭什么那么简单却那么厉害啊?”
国务卿不举手直接站起来:“简单?你不是刚说它极其复杂、无法制造吗?”
“它长得极其复杂,运作的原理却非常简单。跟概率学ai正好相反。我们用概率学ai解决一个问题,构造框架简单明了,但具体实现要做非常复杂的设计、计算和测试。其中有些部分纯粹靠反复碰运气,碰到正确答案为止。为什么正确我们都不知道。而且无法移植,能解决人脸识别的ai设计遇到翻译问题马上废掉,几乎是从头做起。也就是说,我们没有一个关于智能的整体解决方案,都是具体问题各自为战。大脑是一个明摆着的整体解决方案。大脑神经元不懂任何算术,更别说概率学,执行的操作就那么两下。组成一个庞大的网络却能解决一切问题。”
“哦?我听过的科学家,都说大脑的运作原理无比复杂。你却说简单?那么简单的话,能分享一下吗?”
“刚才我讲人怎么下棋的时候,已经说过了:记录,模式抽象,分类,层层创造新概念,把记下的模式用来预测。完了。”
国务卿一时摸不着头脑。图海川挥手让他坐下。戈德曼坐在旁边不动如山,根本当他不存在。
“同行们注意!下面是你们不知道的,或者不愿意承认的。连接主义者很不幸。他们的直觉其实是对的,但生活在上个世纪,生物学和认知神经学都太落后,根本不懂大脑。我们先来看看大脑到底怎么工作。
“我们的计算机程序,数据结构非常复杂,大学时数据结构基础就要学一年。谷歌推出的ai数据标准,光是‘张量’一个结构就能把有些专业人士打晕。而大脑呢?它只传输一种信号:神经电位冲动。它只存储一种数据:组合序列。
“我们的感官接受很多种信号:视觉接受电磁波,听觉接受声波,还有压力、惯性方向、热量转移速率、无数种化学分子,气溶和水溶分子接收体系还不一样……大脑可不像计算机,为每种信号规定一种格式。大脑在神经系统的边界层就把它们全都转换成神经元冲动,在内部全都存储为组合序列。所谓冲动,就是一个神经元以电位形式兴奋起来,并把兴奋传给连着它的另一个神经元。每个冲动本身都是一模一样的,区别只在于从谁传给谁。所谓组合,就是哪些神经元一起兴奋。所谓序列,就是不同组合兴奋的先后顺序。这就是大脑唯一的数据形式,大脑用它解决所有问题。它完全依托于神经元之间的网络存在,没有连接就没有数据。所有写过程序的人,请你们仔细品品这种数据结构。多简洁,多优美!
“我们每时每刻都在接受海量的感官信息。视网膜感光细胞就有几百万个,看电影时每秒激励10次左右,已经赶不上电影每秒几十帧的刷新率。虽然大脑有上千亿个神经元,也不可能存下这么多组合序列。这跟下围棋不可能计算穷尽是一个道理。于是大脑使出第二招:模式抽象。
第(2/8)节
推荐书籍: